

FasterAnalytics for Financial Services – A Case Study

Introduction

DecisionQ has developed FasterAnalytics, a unique analytics package that enables analysts and managers to use sophisticated predictive analytics from their desktops. FasterAnalytics is fast and creates high quality, predictive models from data that enable day-to-day review of financial and trading data, real-time hypothesis testing, and rapid decisions.

FasterAnalytics uses a modeling approach called Bayesian Networks to provide a mapping of the complex relationships in data, which can then be used to make high quality predictions. Users can:

- Get an instant global view of their data.
- Understand the driving factors in the data.
- Test hypotheses in real time in our model Explorer.
- Produce reports that can be exported to other applications.
- Make determinations that can help prioritize the use of scarce research resources.

Market Overview

The Financial Services industry spends billions of dollars on research globally. It is served by an array of software vendors selling tools that enable data analysis and modeling. The pace of financial markets requires that financial professionals constantly revise their models to minimize risk while maximizing profit.

Value to the Customer

FasterAnalytics enables both experts and non-experts in statistics to discover and leverage knowledge from large quantities of data quickly. Examples include:

- Automatically mapping data where targets are unknown to reveal correlations.
- Identifying both positively and negatively correlated relationships to a target variable.
- Discovering new relationships between variables and identifying new profit opportunities.
- Predicting the behavior of any factor or combination of factors in the model.
- Allowing analysts to develop new models in minutes, keeping pace with shifting markets.

FasterAnalytics is designed for real-time environments. Bayesian models are highly effective at identifying emerging trends that can be used to either to identify emerging profit opportunities or alert financial analysts to potential risk exposure.

Product and Technology

DecisionQ Corporation has produced a range of modules that perform data analysis, modeling, visualization, reporting, and decision optimization. FasterAnalytics modules include:

- *Discretizer.* Automatically configures the data for modeling.
- *Modeler.* Quickly creates a visual model of the data.
- *Explorer.* Allows real-time generation and testing of hypotheses.
- *Reporter.* Extracts insights and key points for inclusion in reports and presentations.

Using the System: An Arbitrage Example

The following is an example application of our software using publicly available market data. We have used a set comprised of 5 years of closing data across 42 indices, derivatives, and commodities. FasterAnalytics built the model in this example, from start to finish, in less than 15 minutes.

To build predictive models, our learning engine requires the data to be in a flat tabular format. (Figure 1) The data can be numerical, or variable character strings. Our software also handles missing values automatically and will either impute a value or treat missing values as a special category, at the user's discretion.

Figure 1: This example uses a financial data set held in an Excel spreadsheet as shown below (Partial).

-						-									-
	8	9 2 C	14	•7 • C	2 τ Σ	f.	80%	× 7	Times New Roman	× 10 ×	в.	1 = = =	\$%,	16.13 律律	🖂 - 🏊 · 📥 ·
At		*	- 1	(ear :											
Δ		В		c			D		E	P .		6	н	1	1
				DOV	A YORK?			c	DAGENASDAQ	NASDAQ					
		DOW JONE	5 30	INDO	TRIALS	- 43	EEX HASDA	Q	VOLATILITY	COMPOSITE		NASDAQ	NASD	AG NASDAQ NEW	7 NATING SE
47	_	INDUSTR	IALS	1	OFOWR		VOLUM	8	DADEX	INDEX		ADVANCES	DECLIN	IE2 HIOH	1 LOV
12	98	8543	5.728	22	146.210		39.64	10	26.930	1770.510		2226.000	2021.0	2.030	3 0.2
10	18	85.50	1408		800.211		40.58	0	28.100	1758.540		1963.000	22541	2.04	3 0.2
12	22	8384	830	2	196.000		41.1	2	28,240	1757.140		2015.000	22291	300 1.330	3 0.2
-12	20	85.39	240	20	1376.630		49.12	0	20.130	1759,700		1902.000	2176.0	1.630	3 0.3
-12	¥8	8904	1,000	2	111 633		49.12	0	31.170	1711 990		2005-000	28.22.1	000 0.996	3 0.0
12	20	8,000	1140		100.000		40.00	10	20.300	1755,490		2004.000	13123	200 1.02	2 0.2
10		60.001	1100	64	100.000		41.35	-	10.120	1740.100		2409.000	1900.0	1.93	0.0
12	27 08	8694.3	2.1.07		M15 714		26.14	10	20.030	1746.500		2409.000	10010	1.22	0.00
10	20 00	84.50	1000	41	110,610		62.00	2	28.519	17364,060		21.52.000	2025.0	2.20	0 0.2
-12		84000	1.000		10.0020		40.0		10,000	1771.000		22001.000	10000	1.00	7 D-2
12	20 08	871.0	1.049	40	900.733		44.00	10	20.020	1771.000		2205.000	1840.0	00 1220	0 0.3
19	00	8349	000	-51	724.110		48.0	15	27.630	1729.300		1925.000	2310.0	000 1.940	0 0.3
10	08	8725	400	41	110 610		50.00		27 991	1765,260		2131.000	2023.0	1 574	0 0.0
10	08	8901	0.050		102 510		32.43	10	27.053	1700.000		2190.000	19610	000 2.59	0 0.3
19	94	RADE	4.40	20	100 060		52.00	a	28 300	1289 163		2084.000	2111.0	00 2.63	0 0.3
19	08	8816	5258	5	1573.910		64.88	18	28,280	1792 510		1948.000	2343.0	000 1.700	0 0.3
19	99	8904	440	44	280,710		48.0	19	27.940	1912.440		2396.000	1903.0	2.0%	0 0.2
19	98	8872	800		113.095		53.97	VI EV	30.030	1824 510		2014.000	2209.0	2.60	0 0.2
19	98	8946	090	5	239.010		64.2	13	30.640	1020.540		2108.000	1903.0	000 1.580	0 0.4
19	99	6.794	ORD	5	1990.030		67.9	16	30.290	1823 630		2134.000	20.58.0	000 1.990	0.00
19	98	8782	2120	44	4033.510		42.94	13	30.400	1818.700		1938.000	2318.0	000 1.990	0 D.2
19	98	8.799	0.020	6	369.830		50.94	16	30.879	1935.680		2570.000	1762.0	2.330	0 0.2
19	98	RBAR	100	75	197 310		46.8	2	29.830	1847.660		2057.000	1998.0	2.60	0 03
19	98	8986	5.640	74	4627.190		52.3	6	29.830	1852.960		21.64.000	2133.0	2.890	0 0.3
19	99	8983	1430	62	1922-218		53.90	19	30.050	1855.400		2116.000	2119.0	2.800	0.2
1.9	98	9033	3.230	78	616.380		36.96	3	31,590	1829.140		1800.000	2521.0	2.30	0 0.3
19	98	89.56	5.500	74	579.838		49.5	15	33.563	1798.710		1269.000	3034.0	000 1.040	0.3
19	98	6891	480	21	626.060		38.16	9	32.000	1807.010		2268.000	1926.0	000 3.300	0 0.3
1.9	98	8994	1860	58	\$824.830		41.93	18	31.260	1820.240		2510.000	1701.0	000 1.630	0.3
19	98	9012	2.300	67	224.630		35.01	15	31.070	1824.950		1943.000	2298.0	2.220	0.3
19	98	9110	200	63	1980.710		38.83	14	31.370	1843.030		2474.000	1839.0	2.660	0 0.3
1.9	98	91.62	2.270	67	260.010		42.5	9	29.710	1963.260		2385.000	1936.0	2.790	0.3
19	98	9076	570	6	1978.610		44.08	19	28.890	1858.240		1893.000	2438.0	2.110	0 0.4
19	98	91.67	.300	65	1812.730		34.44	10	28.370	1855.600		2303.000	1864.0	1.830	0.3
19	98	9141	.940	61	013.930		49.30	8	28.300	1997.140		2312.000	1981.0	2.33	0 0.4
19	98	9184	.940	6	520.690		72.93	9	27.290	1903.870		2392.000	1930.0	2,76	0.2
19	98	9176	5.728	53	\$122.430		77.30	1	27.360	1917.610		21.27.000	2170.0	2.50	0.2
	(\She	eti /									1.				
	D G	Advite-	- 290	1.11		<u>م</u>	1 10 3	. 1.	A -=						
	4 0	1920010	and a				6 DE		- · - · · ·	• • •					

Having selected the data, a fully automated process will continue until a full model is presented, or the user can stop each part of the process to manually change parameters in order to leverage particular domain expertise. The software begins by categorizing the data and 'binning' in accordance with the default settings; the data is then passed seamlessly to the Modeler for automated model development. Once the software has mapped all the complex correlations and causality in the data a graphical model is presented in the Explorer (Figure 2). This whole process takes only minutes.

Figure 2: Base case model of the data presented in Explorer

The display illustrates conditional dependence between variables and the pathways existing in the trading model. Notice that the network has several branches, one consisting of interest rates and commodity prices, one consisting of trading volume and directional data, and one consisting of index data.

In the example below, we examine how index performance affects volatility in bull vs. bear markets. We begin by selecting our target variable, CBOE NASDAQ VOLATILITY INDEX. The thick border indicates that this is the target selected, and its color red indicates that we are interested in analyzing how other variables behave when the target is 'high'. The coloring of the remaining nodes is red if the corresponding variable values are also 'high', and green if the corresponding variable values are also 'high' measure of expression level.

Figure 3: CBOE NASDAQ VOLATILITY INDEX set to "high"

19 Part 11 A & C C S Strate. State. State. State. State. State. State. State. State. State. State.

Figure 4: The complementary case analyzing CBOE NASDAQ VOLATILITY INDEX set to "low"

Compare the two models in Figure 3 and 4 above with the base level in Figure 1. It is also possible to select two or more variables simultaneously. The extent to which CBOE NASDAQ VOLATILITY INDEX is related to other variables in its neighborhood is intuitive and clear. This can be used to search for drivers of NASDAQ volatility.

Each variable can be expanded using the 'View' menu or icons to show quantitative information about the relationships. The population data is displayed as "cases" with bars that represent the marginal probability distribution of each case.

Suppose that we are interested in examining how NASDAQ DECLINES and NASDAQ ADVANCES affect CBOE NASDAQ VOLATILITY. We first select these nodes and click "Graph" to display the cases within these nodes. (Figure 5) This can be done for as many variables as we may choose.

Figure 5: Quantitative information about NASDAQ declines and advances relative to volatility.

If we wish to test hypotheses, we can modify any node and see how our hypothesis affects the model. Notice how information flows through the network.

When we change the state of declines or advances, we see very clearly that a declining market has a higher level of volatility than an advancing market. We can see this graphically in Figures 6a and 6b below.

Figure 6a: NASDAQ advances and their effects on volatility.

The Reporter module can be used to create a report that will show the conditional probabilities (or predicted likelihood) of any target variables, given the expression of any independent variable(s). Any part of the model visualization can be pasted into the Reporter module and then transferred into other applications. Figure 7 shows a sample report.

Figure 7: A sample report listing the probabilities of volatility given advances and declines.

👿 DecisionQ FasterAnalytics Report					X							
File Edit												
	C											
DecisionQ FasterAnalytics Report												
[Probability	Dri	vers	Target	1							
	of care	NASDAQ DECLINES	NASDAO ADVANCES	CROE NASDAO VOLATILITY INDEX								
				Un to 30 4 8.5								
				39.4 to 45.9 17.4								
	0.406%	Up to 1612	Up to 1408	45.9 to 52.9 21.8								
				52.9 to 60.8 25.0								
				60.8 plus 27.3								
1				Up to 39.4 8.7								
				39.4 to 45.9 16.7								
	3.436%	1612 to 1868	Up to 1408	45.9 to 52.9 24.2								
				52.9 to 60.8 23.3								
				60.8 plus 27.1								
				Up to 39.4 9.0								
				39.4 to 45.9 21.2								
	9.461%	1868 to 2095	Up to 1408	45.9 to 52.9 25.4								
				52.9 to 60.8 27.2								
				60.8 plus 17.1								
				Up to 39.4 8.6								
				39.4 to 45.9 15.4								
	12.07%	2095 to 2340	Up to 1408	45.9 to 52.9 25.4								
				52.9 to 60.8 23.9								
				60.8 plus 26.6								
[Up to 39.4 8.6								
				39.4 to 45.9 17.8								
	6.503%	2340 phis	Up to 1488	45.9 to 52.9 18.9								
				52.9 to 60.8 23.5								
				60.8 plus 31.1								
ř				12 4 65 4 13 5								

DecisionQ sells predictive modeling software and complementary professional services. Alternatively, components from FasterAnalytics can be integrated into third party applications as part of broad data management and analysis platform.

If you have any further questions or would like to schedule a more detailed demonstration in person or over the web, please contact us.

DecisionQ Corporation 3726 Connecticut Ave. NW, Suite 519 Washington, D.C. 20008 <u>www.decisionq.com</u> Phone: 415-254-7996 Fax : 415-276-6356 Email: <u>info@decisionq.com</u>